WNE Linear Algebra Final Exam Series A

2 February 2023

Questions

Question 1.

Let $\varphi \colon \mathbb{R}^2 \to \mathbb{R}^2$ be an endomorphism given by the formula

$$\varphi((x_1, x_2)) = (4x_1 + tx_2, x_1 + 2x_2).$$

For which $t \in \mathbb{R}$ is the vector v = (1, 1) an eigenvector of φ ? Find the corresponding eigenvalue.

Solution 1.

$$\varphi((1,1)) = (4+t,3) = \lambda(1,1),$$

if and only if $\lambda = 3$ and 4 + t = 3, i.e. t = -1.

Question 2.

Let $A \in M(n \times n; \mathbb{R})$ be a diagonalizable matrix. If $C^{-1}AC = D$ is a diagonal matrix for some invertible matrix $C \in M(n \times n; \mathbb{R})$, does it follow that columns of $(C^{\mathsf{T}})^{-1}$ are eigenvectors of the matrix A^{T} ?

Solution 2.

Yes, it does. If $C^{-1}AC = D$ then $C^{\mathsf{T}}A^{\mathsf{T}} (C^{-1})^{\mathsf{T}} = D^{\mathsf{T}}$ and $(C^{\mathsf{T}})^{-1} = (C^{-1})^{\mathsf{T}}$.

Question 3.

If $A \in M(2 \times 2; \mathbb{R})$ is an antisymmetric matrix, i.e. $A^{\mathsf{T}} = -A$ and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ is the unit matrix, does it follow that matrix A - I is invertible?

Solution 3.

Matrix A is antisymmetric if and only if $A = \begin{bmatrix} 0 & a \\ -a & 0 \end{bmatrix}$, for some $a \in \mathbb{R}$. Hence

$$\det(A - I) = 1 + a^2 > 0,$$

which implies that A - I is invertible.

Question 4.

Matrix $P = \begin{bmatrix} \frac{1}{5} & \frac{2}{5} \\ \frac{2}{5} & \frac{4}{5} \end{bmatrix}$ is a matrix of an orthogonal projection onto some subspace $V \subset \mathbb{R}^2$. Find an orthonormal basis of V^{\perp} .

Solution 4.

The subspace V is equal to the image of P, i.e. $\operatorname{lin}((1,2))$ (it is spanned by columns of P). The subspace V^{\perp} is equal to the kernel of P, which is orthogonal to V, i.e. $\operatorname{lin}((2,-1))$. An orthonormal basis of V^{\perp} is, for example, $\frac{1}{\sqrt{5}}(2,-1)$.

Question 5.

A system of linear equations in two variables has two solutions (1,1) and (1,3). Give an example of a third solution different from the previous ones.

Solution 5.

The set of all solutions of a system of linear equations is an affine subspace hence it is closed under affine combinations. Another solutions is for example

$$\frac{1}{2}(1,1) + \frac{1}{2}(1,3) = (1,2).$$

 $\frac{1}{2}(1,1)+\frac{1}{2}(1,3)=(1,2).$ In fact, for any $b\in\mathbb{R}$ vector (1,b) is a solution of that system.