WNE Linear Algebra
 Final Exam
 Series A

2 February 2023

Questions

Question 1.

Let $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be an endomorphism given by the formula

$$
\varphi\left(\left(x_{1}, x_{2}\right)\right)=\left(4 x_{1}+t x_{2}, x_{1}+2 x_{2}\right) .
$$

For which $t \in \mathbb{R}$ is the vector $v=(1,1)$ an eigenvector of φ ? Find the corresponding eigenvalue.

Solution 1.

$$
\varphi((1,1))=(4+t, 3)=\lambda(1,1)
$$

if and only if $\lambda=3$ and $4+t=3$, i.e. $t=-1$.
Question 2.
Let $A \in M(n \times n ; \mathbb{R})$ be a diagonalizable matrix. If $C^{-1} A C=D$ is a diagonal matrix for some invertible matrix $C \in M(n \times n ; \mathbb{R})$, does it follow that columns of $\left(C^{\top}\right)^{-1}$ are eigenvectors of the matrix A^{\top} ?

Solution 2.

Yes, it does. If $C^{-1} A C=D$ then $C^{\boldsymbol{\top}} A^{\top}\left(C^{-1}\right)^{\top}=D^{\top}$ and $\left(C^{\top}\right)^{-1}=\left(C^{-1}\right)^{\top}$.
Question 3.
If $A \in M(2 \times 2 ; \mathbb{R})$ is an antisymmetric matrix, i.e. $A^{\top}=-A$ and $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ is the unit matrix, does it follow that matrix $A-I$ is invertible?

Solution 3.

Matrix A is antisymmetric if and only if $A=\left[\begin{array}{rr}0 & a \\ -a & 0\end{array}\right]$, for some $a \in \mathbb{R}$. Hence

$$
\operatorname{det}(A-I)=1+a^{2}>0
$$

which implies that $A-I$ is invertible.

Question 4.

Matrix $P=\left[\begin{array}{cc}\frac{1}{5} & \frac{2}{5} \\ \frac{2}{5} & \frac{4}{5}\end{array}\right]$ is a matrix of an orthogonal projection onto some subspace $V \subset \mathbb{R}^{2}$. Find an orthonormal basis of V^{\perp}.

Solution 4.

The subspace V is equal to the image of P, i.e. $\operatorname{lin}((1,2))$ (it is spanned by columns of P). The subspace V^{\perp} is equal to the kernel of P, which is orthogonal to V, i.e. $\operatorname{lin}((2,-1))$. An orthonormal basis of V^{\perp} is, for example, $\frac{1}{\sqrt{5}}(2,-1)$.

Question 5.

A system of linear equations in two variables has two solutions $(1,1)$ and $(1,3)$.
Give an example of a third solution different from the previous ones.

Solution 5.

The set of all solutions of a system of linear equations is an affine subspace hence it is closed under affine combinations. Another solutions is for example

$$
\frac{1}{2}(1,1)+\frac{1}{2}(1,3)=(1,2) .
$$

In fact, for any $b \in \mathbb{R}$ vector $(1, b)$ is a solution of that system.

